

Fisheries Science: A quick tour

Keith Michael

Overview

- Scope of NIWA science
- Fisheries Science
 - What is fisheries science?
 - What we do?
- Some examples of my research

NIWA science centres

N-LWA

Taihoro Nukurangi

Fisheries Science

- Research to better understand and manage fisheries:
 - To maximise their production, sustainability, and value
 - To inform the conservation of the ecological systems from which they are fished
- Provide peer reviewed science to managers and regulators

Taihoro Nukurangi

What we do?

- Stock assessments and monitoring
- Improve fishing gears and methods
- Develop new fisheries
- Understand how animals and habitats are affected by fishing

National Fisheries Centre

- Fish abundance and productivity
- Population modelling and risk analysis
- Estimation of sustainable harvest levels
- Fish ageing, biology and ecology
- Impact on non-target species
- Recreational and customary catches
- Environmental impacts and mitigation strategies
- Ecosystem approaches to fisheries
 - Data management

Stock assessments: what is a stock?

- NZ 200 mile EEZ divided into FMAs
- Each species managed by FMA
- 96 species in the QMS, 346 stocks

Stock assessments: what is an assessment?

- Uses biological and fisheries data to determine the size and status of the stock against reference points
- Provides estimates of safe harvest levels that underpin setting of quotas that are allocated by fisheries regulators between commercial, recreational and customary fishers
- More powerful computers have allowed sophisticated mathematical models to be employed
 NIWA

Taihoro Nukurangi

Biological data

Survey data

Stock assessments: stock status

- Species and information dependent
- Surveys to give current status, else use fisheries data
- Status = additions and losses
- Models together with a good time series of data allows us to make projections of future stock size
 - Enables management to progress from reactive to proactive

Model estimates of population size (shown as a percentage of the pre-fishing population)

Projections of future stock size for different levels of catch and disease mortality

Stock assessments: Future

- End to end ecosystem models
- Marine systems have considerable value, worldwide ecosystem services ~\$40 trillion
- Sustainability requires balancing of social, economic, and environmental objectives
- Requires more knowledge and powerful tools to model complex relationships

Taihoro Nukurangi

Complex relationships

Research interests

- Broad spectrum of research
- Interests in:
 - Collaborative research
 - Science communication
 - Bottom up management
 - Applied research
- Best team approach
- Strategic research

Joint industry NIWA research projects

Science communication

Underwater still and video cameras

Multibeam mapping of the seabed

-N-LWA

Golden Bay Tasman Bay scallop fishery

Scallop enhancement (catching spat)

Working in the UAE, ranger station on Bu Tinah Island

-N-IWA

Can't complain about the weather

Our taxi to Bu Tinah Island

-N-I_WA

We could have done with a larger research vessel

Camera systems to tell us how many fish there were and how big

-N-LWA

Cameras on the outside and inside of the traps show us what fish are doing. Turtle has a good scratch on the trap.

Elevated platforms to provide nesting sites for sea eagles (Ospreys)

Turtle tracks and nesting site

Turtle laying her eggs

Acknowledgments

I thank my colleagues from NIWA for some of the slides and images in this presentation, especially Rosemary Hurst, Alistair Dunn, James Williams, Neil Bagley and Peter Marriott

